بازتابنده خاصیتی بین تقارن و عدم تقارن
عدد طلائی عددیست، تقریباَ مساوی 1.618، که خواص جالب بسیاری دارد،اشکال تعریف شده با نسبت طلائی، از نظر زیبائی شناسی در فرهنگهای غربی دلپذیر شناخته شده، چون بازتابنده خاصیتی بین تقارن و عدم تقارن است.
پاره خطی را در نظر بگیرید و فرض کنید که آنرا بگونه ای تقسیم کنید که نسبت بزرگ به کوچک معادل نسبت کل پاره خط به قسمت بزرگ باشد. اگر این معادله ساده یعنی a2=ab+b را حل کنیم (کافی است بجای b عدد یک قرار دهیم بعد a را بدست آوریم) به نسبتی معادل تقریبا
1.61803399 یا 1.618 خواهیم رسید.
تعریف دیگر نسبت طلایی این است که «عددی مثبت است که اگر به آن یک واحد اضافه کنیم به مربع آن خواهیم رسید». تعریف هندسی آن چنین است: طول مستطیلی به مساحت واحد که عرض آن یک واحد کمتر از طولش باشد.
بسیاری از مراجع علمی، حرف یونانی φ را برای این عدد انتخاب کردهاند.
. اگر عدد فی را بتوان دو برسانیم مثل این است که یک واحد به عدد فی افزوده باشیم یعنی Φ²=Φ+1 و اگر عدد یک را بر فی تقسیم کنیم مثل این است که یک واحد از عدد فی کم کرده باشیم یعنی:
1/Φ=Φ-1
پوسته مارپیچی یک حلزون نمونه ای ساده ودرعین حال زیبا، از نسبت طلائی است.
نسبت قطر مارپیچ های حلزون نیز نسبت 1.618 به یک را دارد.حلزون گوش
در یک کندوی عسل همیشه تعداد زنبورهای ماده از نرها بیشتر است. حال اگر تعداد زنبورهای ماده را به نر تقسیم کنیم در هر کندویی در هر گوشه ی کره ی خاکی یک عدد ثابت بدست می آید. که همان فی است.
در مورد دی.ان.ای، مولکول دی.ان.ای از دو زنجیر پلی نوکئوتیدی ساخته شده. بین بازهای آلی آدنین و تیمین 2 پیوند هیدروژنی و بین بازهای آلی گوانین و سیتوزین 3 پیوند هیدروژنی وجود داره. مطلب جالب در مورد دو رشته پلی نوکلئوتیدی سازنده مولکول دی.ان.ای اینه که هر کدوم از این دوتا رشته 34 آنگستروم طول و 21 آنگستروم پهنا داره که این اعداد و تعداد پیوند ها اعداد دنباله فیبوناچی اند (جهت اطلاع اونایی که نمیدونن بگم که اگه میخواین بدونین یه آنگستروم چقدره، برید یه متر به طول یک متر بردارید و اون یه متر رو ده میلیارد قسمت کنید هر قسمت برابر یه آمگسترومه!)... داوینچی نخستین کسی بود که نسبت دقیق استخوان های انسان را اندازه گیری نمود و ثابت کرد که این تناسبات با ضریب عدد فی هستند.
در بدن انسان مثالهای بسیار فراوانی از این نسبت طلایی وجود دارد. در شکل زیر نسبت M/m یک نسبت طلایی است که در جای جای بدن انسان می توان آنرا دید. به عنوان مثال نقاطی از بدن که دارای نسبت طلایی هستند:
نسبت قد انسان به فاصله ناف تا پاشنه پا
نسبت فاصله نوک انگشتان تا آرنج به فاصله مچ تا آرنج
نسبت فاصله شانه تا بالای سر به اندازه سر
نسبت فاصله ناف تا بالای سر به فاصله شانه تا بالای سر
نسبت فاصله ناف تا زانو به فاصله زانو تا پاشنه پا
- هر گاه شما طول صورت فردی را به عرض ان تقسیم کنید هر چقدر این عدد به عدد طلایی نزدیکتر باشد ان فرد باهوشتر است (ثابت نشده.)
طول هرسه بند انگشت یکی از انگشتان خود را به دلخواه اندازه بگیرید. اندازه بند بالایی را به وسطی تقسیم کنید. عددی در حدود 1.6 خواهد بود نه؟!حال همان عمل بالا (تعیین نسبت) را در مورد بند وسط به بند کوچک انجام دهید.
این نسبت نقش پیچیدهای در پدیدههایی مانند ساختار کریستالها، سالهای نوری فاصله بین سیارات و پریودهای چرخش ضریب شکست نور در شیشه، ترکیبهای موسیقی، ساختار سیارهها و حیوانات بازی میکند. علم ثابت کرده است که این نسبت به راستی نسبت پایه و مبنای خلقت جهان است. هنرمندان دوره رونسانس عدد فی را یک نسبت الهی میدانستهاند.
در بین مثالهای بیشمار از وجود این نسبت و یکی از برجستهترین آنها مارپیچ های DNA است. این دو مارپیچ فاصله دقیقی را با هم براساس نسبت طلایی حفظ میکنند و دور یکدیگر میتابند
ردپای نسبت طلایی در دنیای نجوم نیز دیده می شود. در میان حلقه های زحل شکافی وجود دارد به نام کاسینی که بسیار معروف است. شاید جالب باشد که بدانید این شکاف طول حلقه زحل را به نسبت طلایی تقسیم کرده است! اگر فاصله عطارد از خورشید را به عنوان واحد در نظر بگیریم و فاصله بقیه سیاره هارا به طور نسبی (نسبت به سیاره قبلی) به دست بیاوریم به نتایج بسیار جالبی می رسیم.
پرگار جالبی که ضمن حفاری در پمپی، یکی از شهرهای ایتالیا، در کارگاه یک مجسمه ساز پیدا شده است، دال بر اونه که یونانی ها و رومی ها نه تنها از عدد طلایی آگاهی داشتند بلکه از اون تو عمل هم استفاده می کردند این پرگار که هم اکنون در موزهی ناپل نگه داری میشه طولی برابر 146 میلیمتر داره و به وسیله ی لولا به دو بازوی خود با طول های 56 و 90 میلیمتر تقسیم شده که نسبت این دو عدد به عدد طلایی نزدیکه. تو هنر محشر معماری که ناگفته معلومه این عدد چقدر کاربرد داره... حدود 2500 ساله که از این عدد تو معماری استفاده میشه به طور مثال در بسیاری از معبد های یونانی، میشه بارها این نسبت رو تو بناها پیدا کرد مثلا ً در معبد پارتئون (معبد دختر) که در بین سالهای 447 تا 338 پیش از میلاد مسیح تو آکروپولیس تو آتن ساخته شده و عظیم ترین یادگار هنر معماری یونان باستان هستش، نسبت ارتفاع تمامی ساختمان به طول تیر بزرگ برابر عدد طلایی است.
در قرون وسطا برای نسبت طلایی مفهومی عرفانی و خرافی قائل بودند. معماران قرون وسطا رازهای مربوط به پیدا کردن نسبت ها از جمله نسبت طلایی رو با دقت از دیگران پنهان می کردند،از جمله اوسقف شهر اوترخت به این دلیل که با حیله تونسته بود به روش یافتن نسبت ها تو ساختمان کلیسا ها پی ببره، جان خودش رو از دست داد. از جمله آثار قرون وسطا که عدد طلایی تو اون به چشم میخوره میشه به یکی از شاهکارهای معماری سده ی دوازدهم میلادی، کلیسای اوس پنسکی در چرنیگوف (جمهوری اوکراین) اشاره کرد که اگه نسبت اندازه ها تو قسمت های مختلف رو کلیسا رو محاسبه کنیم همه جا به تقریب به عدد طلایی میرسیم.
بعضی از هنرمندای مجسمه ساز هم از این نسبت استفاه می کنند... به طور مثال برای تقسیم بندی نقاط مختلف صورت میشه از نسبتهای طلایی که در بالا گفتم استفاده کرد اینجوری هم کار طبیعی تر جلوه داده میشه هم به چشم ناظر زیباتر دیده میشه که همش تاثیر عدد طلایی هست.
در موسیقی هم عدد طلایی یافت شده... به طور مثال سر و حلقه ویلن در مستطیل طلایی قرار می گیرد و کاسه آن از دوایری تشکیل شده که نسبت قطر اونا عدد طلایی هستش... زمانی صدای ساز زیبا جلوه می کنه که نسبت دامنه امواج صوت به عدد طلایی میل کنه و اما در خوشنویسی، استاد میر عماد با تغییراتی که تو خطوط پیشینیان انجام داد و اضافات و ناخالصی ها رو از پیکره نستعلیق حذف کرد استاد میرعماد نسبت های اجزای حروف و کلمات رو به درجه ی اعلای زیبایی یعنی نسبت طلایی نزدیک کرد. با بررسی اکثریت قاطع حروف و کلمات استاد متوجه می شویم که این نسبت به عنوان یک الگو تو تار و پود حروف و واژه ها وجود داره و زاویه 63.448 درجه که مبنای ترسیم مستطیل طلایی است، در شروع قلم گذاری و ادامه رانش قلم حضوری تعیین کننده داره.این کارها قطعا ً نتیجه شعور و حس زیبایی شناسی استاد میر عماد هستش نه آگاهی از از فرمول تقسیم طلایی و دیدگاه هندسی و علوم ریاضی کسی و بگیم یه مستطیل بکش، تو اغلب موارد این نسبت اضلاع این مستطیل به عدد طلایی نزدیکه چون ذهن ما به طور ناخودآگاه اینو میخواد... من خودم اینو امتحان کردم... مستطیلی که طرف مقابل برام کشید تا 3 رقم اعشار با عدد طلایی یکسان بود...) همچنین استاد میر عماد این نسبتها رو تو فاصله بین دو سطر و مجموعه دو سطر چلیپاها و کادرهای کتابت و قطعات رعایت کرده
نسبت دو عضو متوالی دنباله
اولین مطلبی که در زمینه ارتباط با دنباله فیبوناچی قابل ذکر است به این قرار است: دنباله را بار دیگر در نظر میبینیم:
10-------9--------8--------7---------6-------5-------4-------3-------2-------1-------شماره جمله
55------34------21-------13-------8-------5-------3-------2-------1-------1-------مقدار جمله
نسبت جمله دوم به اول برابر است با 1
نسبت جمله سوم به دوم برابر است با 2
نسبت جمله چهارم به سوم برابر است با 1٫5
نسبت جمله پنجم به چهارم برابر است با 1٫66
نسبت جمله ششم به پنجم برابر است با 1٫6
نسبت جمله هفتم به ششم برابر است با 1٫625
نسبت جمله هشتم به هفتم برابر است با 1٫615
نسبت جمله نهم به هشتم برابر است با 1٫619
نسبت جمله دهم به نهم برابر است با 1٫617
به نظر میرسد که این رشته به عدد طلایی نزدیک میشود. اگر نسبت عدد چهلم این رشته را به عدد قبلی حساب کنیم به عدد 1٫618033988749895 میرسیم که با تقریب 14 رقم اعشار نسبت طلایی را نشان میدهد. نسبت جملات متوالی به عدد طلایی میل میکند.
- لینک منبع
تاریخ: پنجشنبه , 04 اسفند 1401 (00:47)
- گزارش تخلف مطلب